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Conservative Finite-Difference Approximations of the 
Primitive Equations on Quasi-Uniform Spherical Grids 
ROBERT SADOURNY-Laboratoire de MBtBorologie Dynarnique du C. N. R.S., Paris, France 

ABSTRACT-A class of conservative finite-difference ap- ditions a t  the poles. The presence of artificial internal 
proximations of the primitive equations is given for quasi- boundaries has no effect on the conservation properties 
uniform spherical grids derived from regular polyhedrons. of the approximations. Examples of conservative schemes, 
The earth is split into several contiguous regions. Within up to  the second order in the case of a cube, are given. 
each region, a coordinate system derived from central A selective damping operator is needed to remove the 
projections is used, instead of the spherical coordinate two-grid interval waves generated by the existence of 
system, to avoid the use of inconsistent boundary con- internal boundaries. 

1. INTRODUCTION 

The numerical integration of the equations of atmos- 
pheric motion requires the definition of a system of 
scalar equations with an appropriate coordinate system. 
However; when we try a complete description of the flow 
over the whole sphere, a single coordinate system is 
clearly insufficient inasmuch as the sphere is not homeo- 
morphic to  the plane. It is necessary to split the complete 
spherical domain into several open regions. For instance, 
Phillips (1959) suggested the use of two polar caps to- 
gether with an equatorial belt. In  the most commonly 
used method, the two caps are restricted to  the immediate 
vicinity of the poles, which allows the use of spherical 
coordinates over almost the whole domain. However, 
artificial boundary conditions are necessary in both cases. 
In  the method described by Phillips, there is an over- 
lapping of the grids in the middle latitudes, and one needs 
to interpolate values from one grid to  its neighbor in the 
course of the calculation. This need makes the design of 
a globally conservative scheme impossible in practice. 
When the equatorial belt extends to the vicinity of the 
poles, interpolations are no longer necessary. However, 
the two poles axe singular points in the spherical coordi- 
nate system, and the design of a boundary condition in 
their close vicinity is a delicate matter. 

When spherical coordinates are used except in the 
immediate vicinity of the poles, the most natural choice 
is a uniform grid in the longitude-latitude plane. However, 
such a grid is quite inefficient from the computational 
standpoint because of its exceedingly high resolution at 
higher latitudes. The use of other grids with a more uni- 
form spacing on the sphere has been suggested by several 
authors. Such were the Kurihara (1965) and Kurihara 
and Holloway (1967) grids in which the number of grid- 
points along a parallel circle decreases from Equator to  
pole. Later, the use of a quasi-uniform spherical grid 

derived from the icosahedron was suggested by Sadourny 
et al. (19688) and by Williamson (1968, 1970). In  these 
grids, the pole is surrounded by a fixed number of grid- 
points (four in the case of Kurihara’s grids, five for the 
icosahedral grid). In  other words, the increment in long- 
itude, AX, between these gridpoints stays at a fixed value 
(AX=n/2 or AX=2n/5) instead of decreasing with the grid 
size. 

2. THE BOUNDARY CONDITION AT THE 
POLE IN SPHERICAL COORDINATES 

We shall investigate the boundary condition at  the pole 
when spherical coordinates are used. The zonal component 
of the equation of motion in the case of a two-dimensional 
barotropic flow is then 

with 

where to is the time, X the longitude, (a the latitude, u 
and v the zonal and meridional components of the wind 
velocity vector, a the radius of the earth, j the Cori- 
olis parameter, and 4 the geopotential. When X is 
held constant (X=Xo) and (p-m/2, the quantity 
A(X,(a,to) has a finite limit: 

B@O, to)=lim 4 x 0 ,  (a, t o > .  
v-3 T 

Then the equation 
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defines one component of the time derivative of the wind 
velocity vector a t  the North Pole. 

3. THE EQUATIONS IN A POLYHEDRAL 
REPRESENTATION OF THE EARTH 

Let us define a 
( c p , ~ )  plane when 
or as the smallest 

parameter d as the grid distance io the 
we use a regular grid, G ,  on this plane, 
grid distance if the grid G is not regular. 

A finite-difference approximation, 6u/6X(X,cp,to,d) , of 

dition 

Let US consider the basic equations for a two-dimensional 
free surface flow On the sphere in the following form : 

ih/a~(x,cp,to) defined on G is consistent when the con- av+kX at V( j+curl V)+grad 

and 

lim fi (A, (p, to, d j = g  (A, (p, to) 
d+O 6x 

is satisfied at  every gridpoint. On the other side, a con- 
sistent approximation A*(X,(p,to,d) of A(X,(p,to) is such 
that 

at every gridpoint but the polar gridpoints, and 

lim A*(Al (p, to, d)=B(x, to). 
d-0 

We can see readily that, if we define the approximation 
for the u component of the equation of motion as 

the consistency of 6u/6k alone is not sufficient to ensure 
consistency for A*. An obvious sufficient condition is the 
following: 

lim -((---)=o. 1 sU au 
d + O T  6x ax 

This condition is not verified when the grid is quasi- 
uniform on the sphere since the necessary condition 

6u au 
d+O 61 ax lim * ( --- )=o 

is not even met. For a uniform grid in the ((p,X)-plane, 
a t  least a second-order scheme is required in the vicinity 
of the pole. 

The choice of spherical coodinates is not a suitable 
choice when one decides to use a quasi-uniform grid for 
reasons of computational efficiency. The alternative we 
propose is the choice of central projections, chosen in 
such a way that they map the whole sphere onto a regular 
polyhedron. Although the mapping is not conformal, the 
scalar equations are rather simple. The boundary con- 
ditions are seen to vanish in the finite-difference formu- 
lation, and the simplest schemes are mass- and energy- 
conserving. Consistency as well as computational efficiency 
are ewy to obtain in the absence of singularities. 

at %+div (+V)=O 

where V is the wind velocity vector and k the unit vector 
normal to the sphere. In  the first equation, the curl of a 
two-dimensional vector field has been identified with a 
scalar. Let P be a regular polyhedron circumscribed to 
the sphere S, P ,  (n=l ,  p )  be one of its faces, F, the 
central projection of P, onto the sphere, and S, the image 
S,=Fn(P,). The family (P,, F,).=l,p may be called a 
(polyhedral) representation of S. If we denote by P,, the 
intersection between Pn and P,, which may be void if 
P ,  and P,  are not contiguous, then the boundary of P ,  
is exactly the reunion of all P,, for all m. Furthermore, 
the mappings F, and F, do coincide on P,, and the 
common boundary of S, and S, is 

This particular representation of S will allow us to 
write scalar analogs of eq (1) as a set of scalar partial 
differential equations, each valid in a domain P,. 

Since F, is not a conformal mapping, we shall have to  
introduce the general formulation of elementary diff er- 
entia1 geometry. 

Let m be any point in P,, r f  (i=l, 2) its coordinates in 
a Cartesian system, and M=F,(m) its image in S,. Then 
any vector field V(M) in S,  is entirely defined by its co- 
variant or contravariant components u i  and ut: 

aM ut = v*- axi 
and 

(The usual summation convention will be used throughout 
this paper.) The local geometry is described by the (sir) 
tensor : 

and 

Here, we identify the cross-product of two 2-dimensional 
vectors With a scalar and specify that the determinant, 
(det)i of (sir) has a positive value. Then we are able to 
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express the scalar and cross-products of two vectors A and energy per unit area in P,: 
B as: 

and 
A*B=aib' 

where a,, b, and ai, bf axe the covariant and contravariant 
coordinates of A and B. 

When we use eq (3) for &$/at and auk/&, the following 
identity results: 

When the origin in P, is the center of the face, we get 

rZ ( (x1)2+a2 -x1x2 
Setting a=$3+&UR and b=g+u*, we see that the only 
property used in this derivation is the formal differen- 
tiation property g t F 2  -zixz (xz)z+az  

where a is a radius of the earth and rZ = a2 + (z ' )~ + (9)'. 
Let dS be a curve element in S,, and ds' its contra- 

a - a b + b  - a a=- a ( ~ 6 ) .  
ax' ax, ax, (4) 

variant components. The circulation of V along the curve 
element is defined as the invariant differential form If we denote by E, and 4, the space integrals of E and 

4 over the whole domain, P,  (we may notice that d, 
v. dS = u,ds'* 

. .  
is proportional to the space integral of the mass over P,) ,  
Stokes' .theorem leads to the expressions 

The flux through dS is also an invariant differential 
f,-.mTn. 
I U L U .  

... "<"I , 

1. n 
1 2  and 

VYJQ-,I I 

which does not depend on the mapping. These relations, 
together with Stokes' theorem applied to  an infinitesimal 
square parallel to' the coordinate lines, lead to the ex- 
pressions 

we sum Over to get the integrated energy and 
geopotential over the whole sphere, eq (2) together with 
the invariance of the flux differential form with respect 
to the mapping will cause all line integrals to cancel one 

au another exactly. 
g curl .V=efj-j ax, 

and 
a 

axf 9 g div V=-( ut) 
where 

4. CONSERVATIVE FIN ITE-DI FFERENCE 
APPROXIMATIONS 

Let the operators curl*, grad*, and div* be finite-difference 
approximations of the spherical differential operators 
curl, grad, and div. Then the expressions 

We are now able to write scalar analogs of eq (1) in P,; 
that is, $+kxV(j+curl* V)+grad* (4+; V2)=0 

$+div* (4V)y 20 

are a finite-difference approximation of eq (1). 
To get such an expression we introduce a regular grid 

II, within a face P,. We are then able to substitute usual 
finite-difference operators, 6/82', for the differential oper- 
ators, a/axi, in eq (3). The linear operator, 6/6x', can be 
described by a NXN matrix, where N is the number of 
gridpoints in IIn- Then 

a4 a 
9 at+% (gQU') =o. 

(The first equation is obtained after scalar multiplica- 
tion of the equation of motion by aM/axi.) 

It should be noticed that the use of a conformal map- 
ping would not lead to  a simpler expression. To close the 
system, however, we need the expression of the contra- 
variant components 

u'=g' juj  

and (7) 
a4 6 

g at -+--- 6x' (g+ui) =o 
where (g' j )  is the inverse of the matrix (g i j ) .  I n  a con- 

We shall need now a description of the conservation 
mechanisms for mass and energy in the representation 
(P,, F,). Let us write the time. derivative of the total 
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formal mapping, these matrices would be diagonal. 

are possible expressions for eq (6) a t  any gridpoint which 
belongs to r~,. 



FIGURE 1.-A cubic representation of the earth. A cubic grid is 
shown together with the corresponding spherical grid which fits 
into the cubic splitting of the sphere, in the exact disposition that 
was used in the actual computations. 

In section 3, we had contiguous faces that proved to 
be useful in the description of the conservation mechanisms. 
We shall ask similar properties from the grids II,. Mainly, 
they should be contiguous in the following sense: if we 
denote by TInm the intersection between II, and n,, which 
may be void if TI, and II, are not contiguous, we shall 
ask that the boundary (in the grid sense) of XI, be exactly 
the reunion of all TI,, for all m. This means that the grid- 
points which belong to an edge P,, are common to both 
grids II, and II, (fig. 1). Then F, and F, do coincide on 
the grid boundary TI,,, and the intersection between the 
spherical grids Z n = F n ( I I n )  and Z,=F,(II,) is 

z n r n = F n ( ~ n r n ) = F m @ n r n ) -  (8) 

For the gridpoints which belong to Z,,, we get two dif- 
ferent finite-difference forms [eq (7)] (one involving F, 
and gridpoints in II,, another involving F, and the grid- 
points in TI,) or even more if the gridpoint is a vertex. 
In  these cases, we define the final form [eq ( S ) ]  from 
an equally weighted average of these possible 
approximations. 

We shall be interested only in conservative approxima- 
tions; by a conservative approximation, we mean that 
the approximation is such that some discrete forms of the 
total energy and total geopotential are exactly conserved 
in the time integration. Discrete approximation of E,, and 
4, may be given by the expressions 

and 

&=CXg4 
n. 

where the coefficients X are weight coefficients that define 
t.he discrete form of the space integral. Their sum over 
II, is the area of P,, but they need not be the same at  
all points. 

In  the continuous case, the mechanism of energy con- 
servation inside P,  has been described by eq (4). In  fact, 
we only need the discrete analog of the spatial integral 

The second member is the most general bilinear form de- 
pending only on boundary values. The linear operator B, 
may be described by a matrix Bf: 

with Sy # 0 only when r and s refer to a boundary point. 
The general solution of eq (9) when the second member 
is null is any antisymmetric bilinear form & (aA,b) where 
A, is a linear operator described by any antisymmetric 
matrix ad where 

~ i = ( d s ) r - ~ . N : s * I . N  

with aC=-ffsi'. Hence, the general solution of eq (9) is 

The splitting property [eq (lo)] ensures that the 
mechanism of energy conservation holds within II,. In  
fact, mass conservation also follows from eq (10). To show 
this, we need only substitute a=l  for u=t$+>hu,uk and 
use the same argument, with the further condition that 
6 ( 1 ) / 6 x f = 0 ,  which is verified, in any case, for a consistent 
approximation. 

The splitting condition [eq (lo)] is indeed Stokes' 
theorem in finite-difference form. We may then express 
the time derivative of E,* (respectively 4;). In  both cases, 
it  reduces to a discrete approximation of the outgoing flux 
of energy (respectively geopotential) on the boundary of 
11, that depends on boundary values only. That is, 

and (11) 

These equations are the exact analogs of eq (5). Contrary 
to what happened in section 1, the fact that the grids are 
exactly contiguous, expressed by eq ( S ) ,  together with the 
invariance properties of the flux form with respect to the 
mapping, are not sufficient to ensure the exact cancellation 
of the boundary terms as we sum over n. We need the 
further condition that the discrete forms of the line integral 
described by the operator B ,  be the same on both sides of 
the boundary. 

To meet this condition, it is not sufficient to require 
that the scheme should be the same in all faces. In  fact, 
the faces meet one another in many ways. In  the case of a 
cube, for instance, a boundary, P,,, may be parallel to 
the x1 coordinate lines in the square P,  and parallel to the 
x2 coordinate lines in P,. In  the case of an icosahedron or 
any polyhedron with triangular faces, the junction occurs 
in several ways since the boundaries are parallel to three 
directions PI, y2, and y". In  the case of a cube, the in- 
variance condition on B ,  n.ill be verified if the scheme is 
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formally the same in both directions: a single one- 
dimensional operator 6/82 should be used for the definition 
of 6/6x’ and 6/6c2. Such a scheme may be called isotropic 
wilh respect to the grid. We get a similar condition in the 
case of a triangular grid: 6/6y’ where j =  1, 3 are defined by 
a single one-dimensional operator 6/6y. Then an isotropic 
scheme has the following form: 

P= 

The general form of a conservative scheme is then an 
is0 tropic scheme deduced from a one-dimensional approxi- 
tion satisfying the splitting condition [eq (lo)]. Here, we 
may recall that the scheme on an internal boundary IT,, is 
an averaged form of the schemes in rI, and IT,. I n  the 
average, the boundary terms (depending on the operators 
B,) vanish as they do in the space integrals, and for the 
same reasons. The final approximation is thus completely 
determined by a one-dimentional antisymmetric operator, 
A ;  the presence of internal boundaries is not explicit in 
the calculations. 

o o o i o  

5. FIRST- AND SECOND-ORDER 
APPROXIMATIONS 

The antisymmetric operator A is described by a matrix 
a=(ar8) ,  with ar8=-aSr. We call A a uniform scheme 
when 

r+c= as, *+a. 

These two relations yield 

which means that a uniform antisymmetric scheme is 
what we usually call a centered scheme. Hence, any 
centered scheme is a conservative scheme. 

The simplest conservative approximation is then de- 
duced from the usual 3-point centered scheme. The 
difference operator acting on any row of gridpoints within 
a face is described by a matrix 

The boundary operator B in this case would be described 
by the matrix 

l 0 0 0 i l J  

and -the weights, A, should have the values 

Then the operator 6/82  given by 

(k&)=a+P 

is a second-order operator everywhere except a t  the ex- 
tremities of the row. The finite-difference form [eq (7)] 
is then a first-order approximation on the boundaries, 
TI,,, and a second-order approximation everywhere else. 
The averaging process that defines the final form of the 
approximation on the boundaries, although it leads to a 
formally centered scheme with vanishing of all boundary 
terms, does not restore second-order accuracy; the first- 
order error on each side is dependent on the mapping 
and does not cancel in the average.’ However, if M is the 
total number of gridpoints and M’ the number of boundary 
points, M is small compared to M. I n  fact, 

M‘ x= O(d)  

where d is grid size of IT,. The global average of the 
magnitude of the truncation error may be estimated as 

~ = [ 1 - O ( d ) ] O ( d ~ ) + O ( d ) O ( d ) = O ( d ~ ) .  

We shall, nevertheless, refer to this approximation as “a 
first-order” approximation, to emphasize its behavior on 
internal boundaries, and call it scheme I .  We can expect 
the relatively large trunction error on the boundaries 
to act as an isolated perturbation of the flow and to 
generate a two-grid interval computational noise. 

Since the averaging process cannot be expected to 
increase the accuracy on the boundaries, a true second- 
order scheme is a scheme where eq (7) is already a second- 
order approximation at  all points of IT, including those on 
rI,,,. I n  other words, the one-dimensional approximation 
6/6, should be of second-order accuracy at the extremities 
of the row. For instance, the approximation defined by 

P= 

-1 0 

4 0  

0 4  

-4 0 

1 -4 

0 

0 

-1 

4 

0 

- 3 o o j o  
0 o o ; o  1; 

- 3 o o j o  
0 o o ; o  

o o o i o  

o o o i 3  
1 Higher order centered schemes would still lead to a first-order scheme on the 

boundaries. 
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FIGURE 2.-Results from a numerical integration using the coarse grid and scheme 11, showing the evolution of the geopotential field from 
day 0 (top) to day 5 (bottom) in the case of (A) solid rotation and (B) Phillips' wave. One face only is shown. The central projection is 
used for the map. The South Pole is located at the lower right corner. Units are 103.rn2.s-*. 

and 
k=(2d, 8d, 4d, 8d, . . . , 2d) 

leads to a second-order conservative scheme. However, 
this operator requires an odd number of gridpoints on the 
row. It can be used on a (2p+l)X(2p+l)  square grid, in 
the case of a cube, but cannot be used for polyhedrons 
with triangular faces since the number of gridpoints on a 
row is alternatively even and odd. The main defect of the 
scheme is the alternance in the finite-difference formula- 
tion for even and odd points and the alternance in the 
weights of the gridpoints. Hence, we can expect again a 
two-grid interval computational noise. This scheme on the 
cube will be called scheme 11. 

The numerical tests of the method were done on a cube 
to compare the second-order approximation to the first- 
order approximation. However, the cube is not necessarily 
the best choice among all polyhedrons. It is obvious that 
the dodecahedron has to be discarded since its faces are 
pentagons that are unfit for the design of a grid. The 
regular polyhedrons with triangular faces are the tetra- 
hedron, the octahedron, and the icosahedron. The icosa- 
hedron is the most efficient from the computational 

standpoint. If we suppose we need to integrate the 
equations from t=O to t= T with a given maximum grid 
distance A on the sphere, using the simplest possible 
scheme (scheme I), the efficiency of a polyhedron can be 
measured by the actual time, 6(T, A), needed for the 
integration. We can compute the following estimates: 
setting e( T, A)=eo for the icosahedral grid, we get e( T, A) = 
1.700 for the octahedral or the cubic grid, and 6(T,A)=800 
for the tetrahedral grid. The rather large variation in grid 
size from the center of a face to a vertex is responsible for 
the low efficiency of the tetrahedron. 

I n  the case of the first-order scheme, the first-order 
truncation error on the internal boundaries will be pre- 
dominant. This truncation effect will depend on the 
parameter p=M'JM. Again, if we compare the various 
types of grids for a given maximum grid distance on the 
sphere, setting p=po for the icosahedral grid, we get 
p=O.55po for the octahedral grid, p=0 .6p0  for the cubic 
grid, and p=0.67p0 for the tetrahedral grid. However, the 
truncation effect is too complex to be described by a single 
parameter. It is likely that the accuracy of the computa- 
tions is not significantly affected by the choice of the 
polyhedron. 
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FIGURE 3.-Results on day 4 (top) and day 8 (bottom) from a numerical integration using the finer grid in the case of Phillips’ wave using 
(A) scheme I and (B) scheme 11. The mapping has the same disposition as in figure 2. Units are 103.rn2.s0. 

6. NUMERICAL TESTS OF THE 
METHOD ON A CUBE 

The cube was mapped into the sphere in such a way 
that all six faces played the same role with respect to the 
axis of rotation. In  this case, the two poles are the images 
of two opposite vertices (fig. 1). Two grids were designed 
on the cube: a coarse grid (866 points) corresponding to 
a maximum grid distance of roughly 1000 km a t  the 
center of each face and a finer grid (3,458 points) which 
corresponds to half that distance. The first tests were 
done using scheme 11. We considered f i s t  the so-called 
“solid rotation” case with the following initial fields: 

u=uo sin cp, 

v=o, 
and 

c#J=c#Jo+(uu,n+~u;) cos2 cp 

where u and v are again the zonal and meridional compo- 
nents of the wind velocity vector, cp is the latitude, and 
fi the angular velocity of the earth. We took u0=20 m/s, 
c#Jo=98,100 m2.s-2. There was no significant growth of the 
noise after the second day although it reached such 

amplitude as 0.6 m/s for the wind field. The small-scale 
oscillations due to the scheme appeared as transient, 
without evidence of a large-scale disturbance (fig. 2A) if 
we expect a slight gravity oscillation effect from Equator 
to pole. The time derivation was approximated by the 
usual centered, or “leapfrog” scheme, with a 12-min 
time step. 

A second series of experiments was then performed, 
using initial data close to those used by Phillips (1959). 
A nondivergent flow pattern was selected as an initial 
condition, derived from a stream function #: 

#=-a2w sin p+a2w  COS*^ sin cp cos 4X 

where X is. the longitude and w is equal to 7.48X10-6s-’. 
The exact balanced geopotential corresponding to this 
stream funct,ion is to be found in Phillips (1959). The 
solution that corresponds to this initial condition in the 
nondivergent case is a Haurwitz wave moving slowly 
from west to east with an angular velocity v=2s/29.3, 
which leads to a time period close to 7.35 days. The same 
time extrapolation was used, but the time step had to be 
reduced to 8 min in the coarse grid case, due to the very 
large amplitude of the wind velocity. The use of the coarse 
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grid in this case led to a rather large amplitude of the 
two-grid interval noise (fig. 2B). The experiment was 
then repeated on the fine grid: two runs of 10 days each 
were performed to compare scheme I to scheme I1 (fig. 3). 
The noise is seen to be slightly less in the first case (fig. 
3A). The phase speed is slightly slower with scheme I1 
(fig. 3B), with an %day period instead of an 8.4-day 
period when scheme I is used. Both speeds are less than 
the predicted speed in the nondivergent case, which had 
to be expected. We know that the presence of a nonzero 
divergence contributes to  slow down the rate of progressioii 
of large-scale waves. 

Although scheme I1 is a uniformly second-order approx- 
imation, we can see that it is not an improvement on 
scheme I. In  fact, the truncation error of scheme I, which 
is higher along the boundaries, is much less inside the 
faces, and its overall effect has the same magnitude. The 
two-grid interval noise seems to be inherent to the use of 
a conservative scheme in the presence of internal compu- 
tational boundaries. (It goes without saying that we may 
increase the accuracy to the extent desired, provided we 
drop the conservation conditions.) It is interesting enough 
to compare these results to similar computations in the 
nondivergent case (Sadourny et al. 1968, Williamson 
1968). Although it was not explicit in the formulation of 
the scheme, we had the same kind of truncation error in 
that case; the approximations used for the barotropic 
vorticity equation were of second-order accuracy inside 
the faces of the icosahedron; but they were of first-order 
accuracy only on the edges. The fact that the approxima- 
tions did not actually generate a two-grid interval noise 
is easily explained by the exact conservation of enstrophy 
which, coupled to  the exact conservation of energy, does 
not allow any artificial energy cascade whatsoever toward 
higher wave numbers. Here we could also use an enstrophy 
conserving scheme for the equations of motion. Even in 
the case of equations with divergence, such schemes are 
known for their ability to control the higher end of the 
spectrum (Arakawa 1968). However, enstrophy conserva- 
tion is a constraint on the rotational part of the wind 
only. In  the present case, the noise generated by the 
existence of internal boundaries can be described as a 
small-scale gravity wave with a strong divergent part; 
hence it cannot be controlled by formal enstrophy con- 
servation. We may try instead to add a linear viscosity 
term to the equations of motion, such as vV2V. An effec- 
tive dissipation of the noise would then require an un- 
realistic value of the diffusion coefficient, which should 
be slightly greater than 106m2.s-1. In  this case, viscous 
decay would predominate over nonlinear interactions over 
a large band of the spectrum. 

Even though some physically meaningful two-grid 
interval waves may exist when our method is used in a 
primitive equation model including energy sources, we 
are not able to separate them from the artificial boundary 
effect. Furthermore, a nonstaggered 'centered scheme is 
unable to resolve the two-grid interval wave. Damping 

FIGURE 4.-Results from a numerical integration under the same 
conditions as in figure 3B with a selective damping by a term 
a V V .  Units are 103-1n~.s-~. 

them out in any artificial manner would not cause a 
significant loss of information, provided the remaining 
part of the spectrum is not affected. A highly selective 
damping operator such as an iterated Laplacian would be 
adequate for this purpose. A term aV6V added from time 
to time to the equations of motion would remove all the 
energy that may be generated at  the two-grid interval 
wavelength. Inasmuch as its damping effect' is propor- 
tional to  the sixth power of the wave number, the cor- 
responding dissipation elsewhere in the spectrum should 
be small compared to  the effect of the nonlinear terms. 
Results from a last experiment, including a damping of 
this kind, are shown in figure 4. The main wave is not 
significantly affected by the removal of the noise. 

7. CONCLUSION 

The method we have described here is successful in 
removing all singularities from the finite-diff erence approx- 
imations of the equations of atmospheric motion on 
quasi-uniform spherical grids. The problem that remains 
yet is a truncation error problem resulting from the 
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presence of artificial internal boundaries in the calcula- 
tion. We could have given conditions for enstrophy 
conservation in the case of a nondivergent flow, similar 
to the conditions given by Arakawa (1966, 1968) and 
Sadourny and Morel (1969). Such conditions would 
reduce to a special form of the curl* operator. However, 
this would require the use of a staggered grid, which 
may lead to larger truncattion errors on the boundaries. 
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